Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Immunol ; 13: 1011084, 2022.
Article in English | MEDLINE | ID: covidwho-2312677

ABSTRACT

Background: Prognostic markers for COVID-19 disease outcome are currently lacking. Plasma gelsolin (pGSN) is an actin-binding protein and an innate immune marker involved in disease pathogenesis and viral infections. Here, we demonstrate the utility of pGSN as a prognostic marker for COVID-19 disease outcome; a test performance that is significantly improved when combined with cytokines and antibodies compared to other conventional markers such as CRP and ferritin. Methods: Blood samples were longitudinally collected from hospitalized COVID-19 patients as well as COVID-19 negative controls and the levels of pGSN in µg/mL, cytokines and anti- SARS-CoV-2 spike protein antibodies assayed. Mean ± SEM values were correlated with clinical parameters to develop a prognostic platform. Results: pGSN levels were significantly reduced in COVID-19 patients compared to healthy individuals. Additionally, pGSN levels combined with plasma IL-6, IP-10 and M-CSF significantly distinguished COVID-19 patients from healthy individuals. While pGSN and anti-spike IgG titers together strongly predict COVID-19 severity and death, the combination of pGSN and IL-6 was a significant predictor of milder disease and favorable outcomes. Conclusion: Taken together, these findings suggest that multi-parameter analysis of pGSN, cytokines and antibodies could predict COVID-19 hospitalization outcomes with greater certainty compared with conventional clinical laboratory markers such as CRP and ferritin. This research will inform and improve clinical management and health system interventions in response to SARS-CoV-2 infection.


Subject(s)
COVID-19 , Gelsolin , Biomarkers , Chemokine CXCL10 , Cytokines , Ferritins , Hospitalization , Humans , Immunoglobulin G , Interleukin-6 , Macrophage Colony-Stimulating Factor , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
2.
J Assoc Med Microbiol Infect Dis Can ; 8(1): 75-84, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2279262

ABSTRACT

The SARS-CoV-2 pandemic highlighted the need for rapid, collaborative, and population-centric research to define health impact, develop health care policies and establish reliable diagnostic and surveillance tests. Critical for these objectives were in-depth clinical data collected in standardized fashion and large numbers of various types of human samples prior and post-viral encounter. As the pandemic evolved with the emergence of new variants of concern (VOCs), access to samples and data from infected and vaccinated individuals were needed to monitor immune durability, the possibility of increased transmissibility and virulence, and vaccine protection against new and emerging VOCs. Therefore, essential to the pandemic response is a strong laboratory and data research component, supported by effective biobanking and data sharing. Critically important to the speed of the research response is the rapid access to biobanked samples. To address critical challenges brought to light by the pandemic, the Coronavirus Variants Rapid Response Network (CoVaRR-Net), funded by the Canadian Institutes of Health Research, was established to coordinate research efforts to provide rapid evidence-based responses to emerging VOCs. The purpose of this paper is to introduce the CoVaRR-Net Biobank and define its contribution to pandemic preparedness.


La pandémie de SRAS-CoV-2 a fait ressortir la nécessité de réaliser des recherches rapides, coopératives et populationnelles pour en définir les effets sur la santé, promulguer des politiques sanitaires et établir des tests diagnostiques et des tests de surveillance fiables. Pour réaliser ces objectifs, il était essentiel de colliger des données cliniques approfondies d'une manière standardisée et d'amasser un grand nombre de divers types d'échantillons humains avant et après le contact viral. Lorsque la pandémie a évolué par l'émergence de nouveaux variants préoccupants (VOC), il est devenu nécessaire d'accéder à des échantillons et à des données de personnes infectées et vaccinées pour surveiller la durabilité de l'immunité, la possibilité d'une transmissibilité et d'une virulence accrues et la protection conférée par les vaccins contre les VOC nouveaux et émergents. Ainsi, il est essentiel de disposer d'un vigoureux volet de recherches de laboratoire et de recherches à partir de données pour répondre à la pandémie, soutenu par une mise en biobanque et un partage des données efficaces. Pour assurer une réponse rapide par la recherche, il est tout aussi important d'accéder rapidement aux échantillons mis en biobanque. Afin de relever les défis cruciaux soulevés par la pandémie, le Coronavirus Variants Rapid Response Network (réseau de réponse rapide aux variants du coronavirus; CoVaRR-Net), financé par les Instituts de recherche en santé du Canada, a été créé pour coordonner les efforts de recherche afin de fournir des réponses rapides fondées sur des données probantes aux VOC en émergence. Le présent article vise à présenter la Biobanque CoVaRR-Net et à en définir la contribution à la préparation aux pandémies.

3.
Viruses ; 15(2)2023 02 19.
Article in English | MEDLINE | ID: covidwho-2238514

ABSTRACT

People living with HIV (PLWH) may be at risk for poor immunogenicity to certain vaccines, including the ability to develop immunological memory. Here, we assessed T-cell immunogenicity following three SARS-CoV-2 vaccine doses in PLWH versus uninfected controls. Blood was collected from 38 PLWH on antiretroviral therapy and 24 age-matched HIV-negative controls, pre-vaccination and after 1st/2nd/3rd dose of SARS-CoV-2 vaccines, without prior SARS-CoV-2 infection. Flow cytometry was used to assess ex vivo T-cell immunophenotypes and intracellular Tumor necrosis factor (TNF)-α/interferon(IFN)-γ/interleukin(IL)-2 following SARS-CoV-2-Spike-peptide stimulation. Comparisons were made using Wilcoxon signed-rank test for paired variables and Mann-Whitney for unpaired. In PLWH, Spike-specific CD4 T-cell frequencies plateaued post-2nd dose, with no significant differences in polyfunctional SARS-CoV-2-specific T-cell proportions between PLWH and uninfected controls post-3rd dose. PLWH had higher frequencies of TNFα+CD4 T-cells and lower frequencies of IFNγ+CD8 T-cells than seronegative participants post-3rd dose. Regardless of HIV status, an increase in naive, regulatory, and PD1+ T-cell frequencies was observed post-3rd dose. In summary, two doses of SARS-CoV-2 vaccine induced a robust T-cell immune response in PLWH, which was maintained after the 3rd dose, with no significant differences in polyfunctional SARS-CoV-2-specific T-cell proportions between PLWH and uninfected controls post-3rd dose.


Subject(s)
COVID-19 , HIV Infections , T-Lymphocytes , Humans , CD4-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines , HIV Infections/drug therapy , SARS-CoV-2 , Tumor Necrosis Factor-alpha , T-Lymphocytes/immunology
4.
BMJ Open ; 12(9): e062187, 2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-2064156

ABSTRACT

PURPOSE: To investigate the robustness and longevity of SARS-CoV-2 immune responses conferred by natural infection and vaccination among priority populations such as immunocompromised individuals and people with post-acute sequelae of COVID-19 in a prospective cohort study (Stop the Spread Ottawa-SSO) in adults living in the Ottawa region. In this paper, we describe the study design, ongoing data collection and baseline characteristics of participants. PARTICIPANTS: Since October 2020, participants who tested positive for COVID-19 (convalescents) or at high risk of exposure to the virus (under surveillance) have provided monthly blood and saliva samples over a 10-month period. As of 2 November 2021, 1026 adults had completed the baseline survey and 976 had attended baseline bloodwork. 300 participants will continue to provide bimonthly blood samples for 24 additional months (ie, total follow-up of 34 months). FINDINGS TO DATE: The median age of the baseline sample was 44 (IQR 23, range: 18-79) and just over two-thirds (n=688; 67.1%) were female. 255 participants (24.9%) had a history of COVID-19 infection confirmed by PCR and/or serology. Over 600 participants (60.0%) work in high-risk occupations (eg, healthcare, teaching and transportation). 108 participants (10.5%) reported immunocompromising conditions or treatments at baseline (eg, cancer, HIV, other immune deficiency, and/or use of immunosuppressants). FUTURE PLANS: SSO continues to yield rich research potential, given the collection of pre-vaccine baseline data and samples from the majority of participants, recruitment of diverse subgroups of interest, and a high level of participant retention and compliance with monthly sampling. The 24-month study extension will maximise opportunities to track SARS-CoV-2 immunity and vaccine efficacy, detect and characterise emerging variants, and compare subgroup humoral and cellular response robustness and persistence.


Subject(s)
COVID-19 , Adult , Humans , Female , Male , SARS-CoV-2 , Antibody Formation , Prospective Studies , Antibodies , Vaccination , Immunity, Cellular , Antibodies, Viral
5.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2033745

ABSTRACT

Background Prognostic markers for COVID-19 disease outcome are currently lacking. Plasma gelsolin (pGSN) is an actin-binding protein and an innate immune marker involved in disease pathogenesis and viral infections. Here, we demonstrate the utility of pGSN as a prognostic marker for COVID-19 disease outcome;a test performance that is significantly improved when combined with cytokines and antibodies compared to other conventional markers such as CRP and ferritin. Methods Blood samples were longitudinally collected from hospitalized COVID-19 patients as well as COVID-19 negative controls and the levels of pGSN in μg/mL, cytokines and anti- SARS-CoV-2 spike protein antibodies assayed. Mean ± SEM values were correlated with clinical parameters to develop a prognostic platform. Results pGSN levels were significantly reduced in COVID-19 patients compared to healthy individuals. Additionally, pGSN levels combined with plasma IL-6, IP-10 and M-CSF significantly distinguished COVID-19 patients from healthy individuals. While pGSN and anti-spike IgG titers together strongly predict COVID-19 severity and death, the combination of pGSN and IL-6 was a significant predictor of milder disease and favorable outcomes. Conclusion Taken together, these findings suggest that multi-parameter analysis of pGSN, cytokines and antibodies could predict COVID-19 hospitalization outcomes with greater certainty compared with conventional clinical laboratory markers such as CRP and ferritin. This research will inform and improve clinical management and health system interventions in response to SARS-CoV-2 infection.

6.
BMJ open ; 12(9), 2022.
Article in English | EuropePMC | ID: covidwho-2011138

ABSTRACT

Purpose To investigate the robustness and longevity of SARS-CoV-2 immune responses conferred by natural infection and vaccination among priority populations such as immunocompromised individuals and people with post-acute sequelae of COVID-19 in a prospective cohort study (Stop the Spread Ottawa—SSO) in adults living in the Ottawa region. In this paper, we describe the study design, ongoing data collection and baseline characteristics of participants. Participants Since October 2020, participants who tested positive for COVID-19 (convalescents) or at high risk of exposure to the virus (under surveillance) have provided monthly blood and saliva samples over a 10-month period. As of 2 November 2021, 1026 adults had completed the baseline survey and 976 had attended baseline bloodwork. 300 participants will continue to provide bimonthly blood samples for 24 additional months (ie, total follow-up of 34 months). Findings to date The median age of the baseline sample was 44 (IQR 23, range: 18–79) and just over two-thirds (n=688;67.1%) were female. 255 participants (24.9%) had a history of COVID-19 infection confirmed by PCR and/or serology. Over 600 participants (60.0%) work in high-risk occupations (eg, healthcare, teaching and transportation). 108 participants (10.5%) reported immunocompromising conditions or treatments at baseline (eg, cancer, HIV, other immune deficiency, and/or use of immunosuppressants). Future plans SSO continues to yield rich research potential, given the collection of pre-vaccine baseline data and samples from the majority of participants, recruitment of diverse subgroups of interest, and a high level of participant retention and compliance with monthly sampling. The 24-month study extension will maximise opportunities to track SARS-CoV-2 immunity and vaccine efficacy, detect and characterise emerging variants, and compare subgroup humoral and cellular response robustness and persistence.

7.
EBioMedicine ; 74: 103700, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1540595

ABSTRACT

BACKGROUND: Antibodies raised against human seasonal coronaviruses (sCoVs), which are responsible for the common cold, are known to cross-react with SARS-CoV-2 antigens. This prompts questions about their protective role against SARS-CoV-2 infections and COVID-19 severity. However, the relationship between sCoVs exposure and SARS-CoV-2 correlates of protection are not clearly identified. METHODS: We performed a cross-sectional analysis of cross-reactivity and cross-neutralization to SARS-CoV-2 antigens (S-RBD, S-trimer, N) using pre-pandemic sera from four different groups: pediatrics and adolescents, individuals 21 to 70 years of age, older than 70 years of age, and individuals living with HCV or HIV. Data was then further analysed using machine learning to identify predictive patterns of neutralization based on sCoVs serology. FINDINGS: Antibody cross-reactivity to SARS-CoV-2 antigens varied between 1.6% and 15.3% depending on the cohort and the isotype-antigen pair analyzed. We also show a range of neutralizing activity (0-45%) with median inhibition ranging from 17.6 % to 23.3 % in serum that interferes with SARS-CoV-2 spike attachment to ACE2 independently of age group. While the abundance of sCoV antibodies did not directly correlate with neutralization, we show that neutralizing activity is rather dependent on relative ratios of IgGs in sera directed to all four sCoV spike proteins. More specifically, we identified antibodies to NL63 and OC43 as being the most important predictors of neutralization. INTERPRETATION: Our data support the concept that exposure to sCoVs triggers antibody responses that influence the efficiency of SARS-CoV-2 spike binding to ACE2, which may potentially impact COVID-19 disease severity through other latent variables. FUNDING: This study was supported by a grant by the CIHR (VR2 -172722) and by a grant supplement by the CITF, and by a NRC Collaborative R&D Initiative Grant (PR031-1).


Subject(s)
Antibodies, Viral/blood , Coronavirus 229E, Human/immunology , Coronavirus NL63, Human/immunology , Coronavirus OC43, Human/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/blood , COVID-19/immunology , COVID-19/pathology , Common Cold/virology , Cross Reactions/immunology , Cross-Sectional Studies , Humans , Middle Aged , Seroepidemiologic Studies , Severity of Illness Index , Spike Glycoprotein, Coronavirus/metabolism , Young Adult
8.
J Immunol ; 207(9): 2310-2324, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1497461

ABSTRACT

IFN-γ, a proinflammatory cytokine produced primarily by T cells and NK cells, activates macrophages and engages mechanisms to control pathogens. Although there is evidence of IFN-γ production by murine macrophages, IFN-γ production by normal human macrophages and their subsets remains unknown. Herein, we show that human M1 macrophages generated by IFN-γ and IL-12- and IL-18-stimulated monocyte-derived macrophages (M0) produce significant levels of IFN-γ. Further stimulation of IL-12/IL-18-primed macrophages or M1 macrophages with agonists for TLR-2, TLR-3, or TLR-4 significantly enhanced IFN-γ production in contrast to the similarly stimulated M0, M2a, M2b, and M2c macrophages. Similarly, M1 macrophages generated from COVID-19-infected patients' macrophages produced IFN-γ that was enhanced following LPS stimulation. The inhibition of M1 differentiation by Jak inhibitors reversed LPS-induced IFN-γ production, suggesting that differentiation with IFN-γ plays a key role in IFN-γ induction. We subsequently investigated the signaling pathway(s) responsible for TLR-4-induced IFN-γ production in M1 macrophages. Our results show that TLR-4-induced IFN-γ production is regulated by the ribosomal protein S6 kinase (p70S6K) through the activation of PI3K, the mammalian target of rapamycin complex 1/2 (mTORC1/2), and the JNK MAPK pathways. These results suggest that M1-derived IFN-γ may play a key role in inflammation that may be augmented following bacterial/viral infections. Moreover, blocking the mTORC1/2, PI3K, and JNK MAPKs in macrophages may be of potential translational significance in preventing macrophage-mediated inflammatory diseases.


Subject(s)
Interferon-gamma/biosynthesis , Macrophages/drug effects , Poly I-C/pharmacology , COVID-19/immunology , Humans , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/immunology , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/immunology , Macrophages/immunology , Phosphatidylinositol 3-Kinases/immunology , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 70-kDa/immunology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/immunology , Toll-Like Receptor 4/agonists
SELECTION OF CITATIONS
SEARCH DETAIL